Flavour-changing neutral currents making and breaking the standard model (2024)

  • ATLAS Collaboration. The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008)

  • CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008)

  • Evans, L. et al. LHC machine. J. Instrum. 3, S08001 (2008)

    Article Google Scholar

  • LHCb Collaboration. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008)

  • Bjorken, B. J. & Glashow, S. L. Elementary particles and SU(4). Phys. Lett. 11, 255–257 (1964)

    Article CAS ADS MathSciNet Google Scholar

  • Glashow, S. L., Iliopoulos, J. & Maiani, L. Weak interactions with lepton–hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970).Proposed a mechanism for the suppression of FCNCs, and predicted the existence of a fourth quark—the charm quark

    Article ADS Google Scholar

  • Aubert, J. J. et al. Experimental observation of a heavy particle J. Phys. Rev. Lett. 33, 1404–1406 (1974)

    Article CAS ADS Google Scholar

  • Augustin, J. E. et al. Discovery of a narrow resonance in e+e annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974)

    Article CAS ADS Google Scholar

  • BaBar Collaboration. The BaBar detector. Nucl. Instrum. Methods A 479, 1–116 (2002)

  • Belle Collaboration. The Belle detector. Nucl. Instrum. Methods A 479, 117–232 (2002)

  • Ellis, J. Beyond the standard model with the LHC. Nature 448, 297–301 (2007)

    Article CAS ADS Google Scholar

  • Altmannshofer, W. & Straub, D. M. New physics in BKμμ? Eur. Phys. J. C 73, 2646 (2013)

    Article ADS Google Scholar

  • Bobeth, C., Ewerth, T., Kruger, F. & Urban, J. Analysis of neutral Higgs-boson contributions to the decays B s+ and → Kℓ+. Phys. Rev. D 64, 074014 (2001)

    Google Scholar

  • Babu, K. & Kolda, C. F. Higgs-mediated B0μ+μ in minimal supersymmetry. Phys. Rev. Lett. 84, 228–231 (2000)

    Article CAS ADS Google Scholar

  • Huang, C.-S., Liao, W. & Yan, Q.-S. Promising process to distinguish super-symmetric models with large tanβ from the standard model: BX s μ+μ. Phys. Rev. D 59, 011701 (1999)

    Article ADS Google Scholar

  • Rai Choudhury, S. & Gaur, N. Dileptonic decay of B s meson in SUSY models with large tanβ. Phys. Lett. B 451, 86–92 (1999)

    Article CAS ADS Google Scholar

  • Bobeth, C. et al. B s,d+ in the standard model with reduced theoretical uncertainty. Phys. Rev. Lett. 112, 101801 (2014)

    Article ADS Google Scholar

  • HPQCD Collaboration. B and B s meson decay constants from lattice QCD. Phys. Rev. D 86, 034506 (2012)

  • Fermilab Lattice & MILC Collaborations. B- and D-meson decay constants from three-flavor lattice QCD. Phys. Rev. D 85, 114506 (2012)

  • RBC–UKQCD Collaborations. B-meson decay constants with domain wall light quarks and nonperturbatively tuned relativistic b-quarks. AIP Conf. Proc. 1560, 368 (2013)

  • Cabibbo, N. Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)

    Article ADS Google Scholar

  • Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article CAS ADS Google Scholar

  • CMS Collaboration & LHCb Collaboration. Observation of the rare Flavour-changing neutral currents making and breaking the standard model (1)μ+μ decay from the combined analysis of CMS and LHCb data. Nature 522, 68–72 (2015).After three decades of searching, the first observation of the very rare decay  → μ+μ, made by the CMS and LHCb collaborations

  • ATLAS Collaboration. Study of the rare decays of Flavour-changing neutral currents making and breaking the standard model (2) and B0 into muon pairs from data collected during the LHC run 1 with the ATLAS detector. Eur. Phys. J. C 76, 513 (2016)

  • LHCb Collaboration. Differential branching fractions and isospin asymmetries of BK()μ+μ decays. J. High Energy Phys. 6, 133 (2014)

  • LHCb Collaboration. Angular analysis and differential branching fraction of the decay Flavour-changing neutral currents making and breaking the standard model (3)φμ+μ. J. High Energy Phys. 9, 179 (2015)

  • LHCb Collaboration. Measurements of the S-wave fraction in B0K+πμ+μ decays and the B0K(892)0μ+μ differential branching fraction. J. High Energy Phys. 11, 47 (2016)

  • Bobeth, C., Hiller, G. & Piranishvili, G. Angular distributions of → λ++ decays. J. High Energy Phys. 12, 040 (2007)

    Google Scholar

  • Bordone, M., Isidori, G. & Pattori, A. On the standard model predictions for R K and R K . Eur. Phys. J. C 76, 440 (2016)

    Article ADS Google Scholar

  • LHCb Collaboration. Test of lepton universality using B+ → K++ decays. Phys. Rev. Lett. 113, 151601 (2014).Most precise measurement of the lepton universality ratio R K

  • BaBar Collaboration. Measurement of branching fractions and rate asymmetries in the rare decays BK()+. Phys. Rev. D 86, 032012 (2012)

  • Belle Collaboration. Measurement of the differential branching fraction and forward-backward asymmetry for BK()+. Phys. Rev. Lett. 103, 171801 (2009)

  • Belle Collaboration. Improved measurement of the electroweak penguin process BX s +. Phys. Rev. D72, 092005 (2005)

  • BaBar Collaboration. Measurement of the BX s + branching fraction and search for direct CP violation from a sum of exclusive final states. Phys. Rev. Lett. 112, 211802 (2014)

  • LHCb Collaboration. Angular analysis of the B0K0μ+μ decay using 3 fb−1 of integrated luminosity. J. High Energy Phys. 2, 104 (2016).Most precise results yet from angular analysis of the decay B0 K0μ+μ, showing a discrepancy with standard model predictions for the observables that describe the angular distribution, including the observable

  • Belle Collaboration. Lepton-flavor-dependent angular analysis of BK+. Phys. Rev. Lett. 118, 111801 (2017)

  • Blake, T., Lanfranchi, G., Straub, D. M. & Rare, B. Decays as tests of the standard model. Prog. Part. Nucl. Phys. 92, 50–91 (2017)

    Article CAS ADS Google Scholar

  • Descotes-Genon, S., Hofer, L., Matias, J. & Virto, J. On the impact of power corrections in the prediction of BKμ+μ observables. J. High Energy Phys. 12, 125 (2014)

    Article ADS Google Scholar

  • Pich, A. Effective field theory: course. In Probing the Standard Model of Particle Interactions: Proc. Summer School in Theoretical Physics (eds Gupta, R. et al.) 949–1049 (Elsevier, 1998); preprint at https://arxiv.org/abs/hep-ph/9806303

  • Wilson, K. G. & Zimmermann, W. Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys. 24, 87–106 (1972)

    Article ADS MathSciNet Google Scholar

  • Descotes-Genon, S., Hurth, T., Matias, J. & Virto, J. Optimizing the basis of BK+ observables in the full kinematic range. J. High Energy Phys. 5, 137 (2013).First proposal to use angular observables such as, which have reduced uncertainties from strong-force interactions

    Article ADS Google Scholar

  • Descotes-Genon, S., Matias, J. & Virto, J. Understanding the BKμ+μ anomaly. Phys. Rev. D 88, 074002 (2013)

    Article ADS Google Scholar

  • Altmannshofer, W., Gori, S., Pospelov, M. & Yavin, I. Quark flavor transitions in L μL τ models. Phys. Rev. D 89, 095033 (2014)

    Article ADS Google Scholar

  • Mahmoudi, F., Neshatpour, S. & Virto, J. BK μ+μ optimised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014)

    Article ADS Google Scholar

  • Crivellin, A., D’Ambrosio, G. & Heeck, J. Explaining hμ±τ, BKμ+μ and B+μ/BKe+e in a two-Higgs-doublet model with gauged L μL τ . Phys. Rev. Lett. 114, 151801 (2015)

    Article ADS Google Scholar

  • Descotes-Genon, S., Hofer, L., Matias, J. & Virto, J. Global analysis of bsℓℓ anomalies. J. High Energy Phys. 6, 92 (2016)

    Article ADS Google Scholar

  • Hurth, T., Mahmoudi, F. & Neshatpour, S. On the anomalies in the latest LHCb data. Nucl. Phys. B 909, 737–777 (2016)

    Article CAS ADS Google Scholar

  • Jäger, S. & Martin Camalich, J. On BVℓℓ at small dilepton invariant mass, power corrections, and new physics. J. High Energy Phys. 5, 43 (2013)

    Article ADS Google Scholar

  • Beaujean, F., Bobeth, C. & van Dyk, D. Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays. Eur. Phys. J. C 74, 2897 (2014); erratum 74, 3179 (2014)

  • Hurth, T. & Mahmoudi, F. On the LHCb anomaly in BK+. J. High Energy Phys. 4, 97 (2014)

    Article ADS Google Scholar

  • Gauld, R., Goertz, F. & Haisch, U. An explicit Z′-boson explanation of the BKμ+μ anomaly. J. High Energy Phys. 1, 69 (2014)

    Article ADS Google Scholar

  • Datta, A., Duraisamy, M. & Ghosh, D. Explaining the BKμ+μ data with scalar interactions. Phys. Rev. D 89, 071501 (2014)

    Article ADS Google Scholar

  • Lyon, J . & Zwicky, R. Resonances gone topsy turvy - the charm of QCD or new physics in bsℓ+? Preprint at https://arxiv.org/abs/1406.0566 (2014)

  • Altmannshofer, W. & Straub, D. M. New physics in bs transitions after LHC Run 1. Eur. Phys. J. C 75, 382 (2015).Global analysis of FCNC anomalies involving the beauty quark, hinting at a significant contribution from a new-physics particle.

    Article ADS Google Scholar

  • Altmannshofer, W., Gori, S., Profumo, S. & Queiroz, F. S. Explaining dark matter and B decay anomalies with an L μ− L τ model. J. High Energy Phys. 12, 106 (2016)

    Article ADS Google Scholar

  • Pati, J. C. & Salam, A. Lepton number as the fourth color. Phys. Rev. D 10, 275–289 (1974); erratum 11, 703 (1975)

    Article CAS ADS Google Scholar

  • Bauer, M. & Neubert, M. Minimal leptoquark explanation for the, R K, and (g − 2)µ anomalies. Phys. Rev. Lett. 116, 141802 (2016)

    Google Scholar

  • Fajfer, S. & Konik, N. Vector leptoquark resolution of R K and puzzles. Phys. Lett. B 755, 270–274 (2016)

    CAS Google Scholar

  • Gripaios, B., Nardecchia, M. & Renner, S. A. Composite leptoquarks and anomalies in B-meson decays. J. High Energy Phys. 5, 6 (2015)

    Article ADS Google Scholar

  • Khodjamirian, A., Mannel, T. & Wang, Y. BK + decay at large hadronic recoil. J. High Energy Phys. 2, 10 (2013)

    Article ADS Google Scholar

  • Khodjamirian, A., Mannel, T., Pivovarov, A. & Wang, Y.-M. Charm-loop effect in BK()+ and BKγ. J. High Energy Phys. 9, 89 (2010)

    Article ADS Google Scholar

  • Belle II Collaboration. Belle II technical design report. Preprint at https://arxiv.org/abs/1011.0352 (2010)

  • Flavour-changing neutral currents making and breaking the standard model (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Sen. Emmett Berge

    Last Updated:

    Views: 6145

    Rating: 5 / 5 (80 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Sen. Emmett Berge

    Birthday: 1993-06-17

    Address: 787 Elvis Divide, Port Brice, OH 24507-6802

    Phone: +9779049645255

    Job: Senior Healthcare Specialist

    Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

    Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.